
FPGA-based Accelerator for Vector Search
Lasya Balachandran

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA, United States
lasyab@mit.edu

Sanjay Seshan
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA, United States

seshan@mit.edu

Abstract—With the application of graphs in large-scale mod-
eling, such as social network analysis and image and video
segmentation, among other applications, graphs are increasingly
being used to encode and find complex relationships between data
for machine learning models, leading to an increased need for
optimization of these models. As a result, in order to better sup-
port model-specific algorithm efficiency, there has been work to
create specialized hardware accelerators focusing on aspects such
as memory accessing, latency, and resource allocation. However,
current accelerators for graph problems are not scalable and can
only be optimized for a single application, such as graph random
walks or matrix multiplication. Existing systems also run on CPU
or GPUs. Following from prior accelerator work on FPGAs, we
plan to implement a graph-based vector search algorithm, based
on iQAN, that runs on an FPGA to produce better algorithm
performance than on existing systems and can be used for more
versatile applications.

Index Terms—FPGA, accelerator, graph, vector search

I. INTRODUCTION

The goal of this project is to implement an accelerator for a
general-use search algorithm. One of the main problems when
working with large graphs is the large amount of computations,
which is a reason why current accelerators have focused on
specific optimizations on CPU or GPU systems [1]. One way
we can reduce computations is by running the calculations
on only a subset of the graph. For example, the novel graph-
based vector search algorithm iQAN [2] uses a priority queue
of certain length to approximate the most similar points and
avoid brute-force-checking all of the points. Graph sampling,
where we select a random subset of vertices representative of
the entire graph, can also be used to reduce a graph. We are
planning to implement a vector search algorithm on an FPGA
to get improved results as a result of higher customizability
with pipelining, parallelizing, and optimizing the architecture.

We propose a new implementation of the BFiS on an
FPGA, using a custom architecture, that can take advantage
of the multifaceted processing of a Xilinx Spartan-7 FPGA, to
improve performance compared to current implementations.

The following sections will discuss the implementation of
our system and individual components of the system.

II. SYSTEM OVERVIEW

Based on the paper on iQAN, we are implementing the Best
First Search (BFiS), a graph-based vector search algorithm, on
the FPGA [2]. The algorithm is as follows:

1 Input: graph G, starting point P, query Q, queue
capacity L

2 Output: K nearest neighbors of Q
3 priority queue S <- {} /* sorted based on distance

*/
4 index i <- 0
5 compute dist(P, Q)
6 add P into S
7 while S has unchecked vertices do /* stop condition

*/
8 i <- the index of the 1st unchecked vertex in S
9 mark v_i as checked

10 foreach neighbor u of v_i in G do
11 if u is not visited then
12 mark u as visited
13 compute dist(u,Q)
14 add u into S /* u is unchecked */
15 if S.size() > L then S.resize(L)
16 return the first K vertices in S

Our design [Figure 8 in Appendix section XI-A] is com-
posed of three main components: graph storage, vector search,
and SPI output. The vector search module is a much larger
module that is composed of several different modules.

We have chosen to implement our system in a bottom-
up approach, implementing core features such as queues,
priority queues, memory interfaces, and related layouts before
designing the interconnections for each module.

III. CPU IMPLEMENTATION

A. Design

We have created a basic implementation of BFiS in C++ as
a baseline comparison. The code can be found in Appendix
section XI-B. By default, priority queues in C++ have a max
heap structure (can be converted to min heap), where only
the first element can be accessed or removed from the queue.
Since, according to the BFiS pseudocode, we must be able to
access the closest visited point that we have not yet checked
in the priority queue, we created two priority queues: a min
heap S to keep track of all visited points and a max heap
checked to keep track of checked points.

In our min heap structure, our top point is our closest
unchecked point. Once we check a point in S, we add it
to checked if either the size of checked is less than our
desired priority queue capacity L or the distance from the
query to the point is less than the distance of the query to
the top point in checked (farthest checked point from the
query). If the size of checked is greater than L after adding

1

a point, we pop the top element off of the queue, allowing us
to maintain queue capacity L.

We exit the while loop when the capacity of checked
is L and the closest point in S is farther than the farthest
point in checked since this denotes that the L closest points
(based on our approximation) have all been checked. We then
returned the bottom k elements in checked to represent the
approximate k closest points to the query.

We also use the square of the distance in our CPU im-
plementation instead of the actual distance since the square
would be easier to implement on the FPGA, making it easier to
directly compare the performance of the two implementations.

We designed system on the FPGA such that it is similar to
this CPU design. For example, since we can remove the top
element of priority queue S and access its size, we designed
our priority queue module to have similar capabilities.

B. Verification and Performance

The C++ implementation of BFiS was tested against a data
set containing 10,000 points of 128 dimensions each and 100
queries. Table I shows the algorithm performance in terms of
accuracy and runtime with varying sizes of L and k= 100. The
accuracy was compared to the actual k closest points from a
brute force approach. A C++ implementation of the brute force
approach runs in about 0.8 seconds.

TABLE I
PERFORMANCE OF BFIS (C++) ON GRAPH WITH 10,000 POINTS

PQ Capacity L Accuracy Runtime (sec)
200 0.8434 0.072317
500 0.9482 0.121287
700 0.9892 0.144219
900 0.9893 0.163350
1000 0.9993 0.172315

Based on the accuracies, the algorithm seems to approxi-
mate the k closest points well. As the size of L increases,
the accuracy of the approximation approaches 1 since the
algorithm visits more points. The runtime of BFiS is also
significantly faster than the runtime of the brute force ap-
proach. We plan on further testing the CPU implementation
with graphs of up to 1,000,000 points for eventual comparison
with our FPGA version, but for the scope of this project, we
did not use graphs that large and used small priority queue
sizes (< 10) due to size limitations of our FPGA.

We also tested the system on a series of smaller predefined
datasets (tester and citeseer) and configurations as a prelim-
inary baseline comparison to the FPGA results. The CPU
results are seen in Table II. The number following the dataset
name denotes the number of dimensions used. The dataset
tester contains 8 vertices and 24 edges, while citeseer contains
3312 vertices and 9072 edges.

These results are from a server with an Ubuntu Linux server
with a 64-bit Intel Xeon E5-2690 CPU and sufficient memory
for the graph. The code is running on a single core.

TABLE II
PERFORMANCE OF BFIS ON AN CPU FOR SELECT DATA

Dataset PQ Capacity L Runtime (sec)
tester 4 5 5.3 ·10−5

tester 8 5 5.6 ·10−5

citeseer 4 5 0.000113
citeseer 4 8 0.000116
citeseer 4 10 0.000112

IV. CORE COMPONENTS

We designed 6 smaller modules to create a working system
on the FPGA: n-dimensional distance calculator, FIFO queue,
specialized priority queue, graph memory storage, interface
for finding if a point has been visited, and graph fetcher for
finding neighbors of a given point and position data for the
neighbors. The FIFO queue was used to build the specialized
priority queue and graph fetcher, while the other 5 modules
were integrated together in a larger BFiS module to run the
algorithm. We also used Manta to transmit inputs to and
receive outputs from the FPGA. A block diagram of the entire
system is shown in Figure 8 in Appendix section XI-A.

A. Distance Calculator

We implemented a distance calculator that computes the
square of the Euclidean distance between two points, accord-
ing to the following equations:

dist(v⃗) = ||v⃗||

= dist(x1, y1, x2, y2+. . .) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .

dist2(x1, y1, x2, y2, . . .) = (x1 − y1)
2 + (x2 − y2)

2 + . . .

To avoid implementing a square root, we decided to consider
the square of the distance anywhere dist is used since this
calculation will provide the same result to our algorithm.

The input vertex and query to our distance module represent
two vectors (a point in the graph and the query), each of
dimension DIM, which is set at compile time. Our graph
fetcher module (Section IV-F) provides the position vector of
the vertex, while our query is an input to the system. Each
element of the vertex is provided sequentially on subsequent
cycles (i.e. P0 and Q0 on the first cycle, P1, Q1 on the second
cycle, etc). We assume that the elements of the input vectors
are in order in memory for all practical purposes.

1 module distance #(parameter DIM = 2)(
2 input wire clk_in,
3 input wire rst_in,
4 input wire data_valid_in [DIM-1:0],
5 input wire [31:0] vertex_pos_in [DIM-1:0],
6 input wire [31:0] query_pos_in [DIM-1:0],
7 output logic [31:0] distance_sq_out,
8 output logic data_valid_out
9);

2

This system is pipelined by parallelizing the subtraction,
multiplication, and addition for the distance calculation, as
shown in Figure 1. On the first cycle, we calculate Q0 − P0

and on the second cycle, we calculate square the result. On
the second cycle, we also calculate Q1 − P1 and similarly
parallelize our subtraction and multiplication on future cycles.

We originally designed this module using two states: one for
subtraction and multiplication and a second to recursively add
the squares of the differences. However, since the recursive
adder took 2 cycles, we realized that we could parallelize the
addition similarly to how we parallelized the subtraction and
multiplication to reduce our cycle count by 1 cycle. With many
distance calculations in the overall BFiS module, this change
could significantly reduces the overall cycle count.

To meet timing requirements, we later implemented a 32-
cycle multiplier that multiplies two 32-bit numbers using
each power of two instead of using the built-in multiplication
functionality. Each multiplier runs in parallel so that we have
a total delay of only 32 cycles.

1 int multiply(int x, int y)
2 {
3 int ret = 0;
4 for (int i = 0; i < 32; i++)
5 {
6 if (((y >> i) & 1) == 1)
7 {
8 ret += (x << i);
9 }

10 }
11 return ret;
12 }

Fig. 1. Distance calculator tree

We created a testbench to simulate our distance calculator
with dimensions 3, 4, and 9. Our module correctly returned
the square of the distances for each with 36, 37, and 42 cycles,
respectively.

B. FIFO Queues

We developed an effective FIFO [Figure 2] that is versatile
for use throughout our system. This FIFO is important for
maintaining ordering for memory requests, buffering outputs,
buffering inputs for distance calculations, and more.

We provide an easy interface for our FIFOs:

1 module FIFO #(parameter DATA_WIDTH = 32, parameter
DEPTH = 8)(

2 input wire clk_in,
3 input wire rst_in,
4 input wire deq_in,
5 input wire [DATA_WIDTH-1:0] enq_data_in,
6 input wire enq_in,
7 output logic full_out,
8 output logic [DATA_WIDTH-1:0] data_out,
9 output logic empty_out,

10 output logic valid_out
11);

Fig. 2. Core FIFO Implementation

Our FIFO consists of four main components – the queue
array, a read pointer, a write pointer, and an array of valid
bits. The FIFO is fixed size and is allocated a depth and
width at initialization. The read pointer gets incremented upon
dequeueing and the write pointer gets incremented upon en-
queueing. Pointers wrap around when reaching the maximum
depth of the queue, assuming it is not full. The valid bits are
used to determine if the queue is full or empty, on the condition
that the read and write pointers are at the same location. Such
a queue allows us to effectively buffer all inputs and outputs
to our system, making pipelining easier.

We created a testbench enqueuing and dequeuing elements
from the FIFO to verify that it is working. Enqueing and
dequeuing elements takes 1 cycle each.

C. Specialized Priority Queue

Based on our CPU implementation that used a priority
queue S with a min heap structure and a priority queue
checked with a max heap structure, we implemented a pri-
ority queue that is capable of dequeueing either the maximum
or minimum element at any given cycle.

1) Structure: Our modified priority queue [Figure 3] is
implemented as a searchable FIFO that functions as a min
heap and a max heap. We have a data array, which contains the
vertex ID, and a tag array, which contains the corresponding

3

distances. If we request the smallest element, we dequeue the
element with the smallest tag; if we request the largest element,
we dequeue the element with the largest tag.

We provide a simple interface for a priority queue that is
similar to a FIFO, but allows tagging entries with a distance.

1 module PriorityQueue #(parameter DATA_WIDTH = 32,
parameter TAG_WIDTH = 32, parameter DEPTH = 8)(

2 input wire clk_in,
3 input wire rst_in,
4 input wire deq_smallest_in,
5 input wire deq_largest_in,
6 input wire [DATA_WIDTH-1:0] enq_data_in,
7 input wire [TAG_WIDTH-1:0] enq_tag_in,
8 input wire enq_in,
9 output logic full_out,

10 output logic [DATA_WIDTH-1:0] data_out,
11 output logic [TAG_WIDTH-1:0] tag_out,
12 output logic [$clog2(DEPTH):0] size_out,
13 output logic empty_out,
14 output logic valid_out,
15 output logic [TAG_WIDTH-1:0] max_tag_out,
16 output logic deq_stall_out
17);

In order to determine the smallest and largest tags, we
start with default values of 32’hFFFFFFFF for the smallest tag
and 32’h0 for the largest tag if the queue is empty. If we
enqueue an element, we compare the current minimum and
maximum values to the tag enq_tag_in of the new element.
If enq_tag_in is less than the current minimum tag, our new
minimum tag is enq_tag_in, and similarly if enq_tag_in is
greater than the current maximum tag, our new maximum tag
is enq_tag_in. If we dequeue an element, we search through
the queue for the new minimum and maximum tags after
successfully dequeuing the element. We sequentially search
through the queue by iterating through the elements in DEPTH

cycles and comparing the tags of the elements.
A FIFO is used to maintain the least recently used (LRU)

ordering in the cache, so that we can insert elements to only
empty slots in the priority queue array(s). The LRU FIFO is
largely the same as a regular FIFO but allows synchronous
dequeueing (i.e. can read and dequeue in the same cycle)
and preinitializing values in order. The preinitialized values
correspond to each empty index in the priority queue array.
Dequeueing from this FIFO allows a quick identification of
empty positions and a way to easily recycle positions, once
dequeued from the priority queue. The smallest tag and its
associated data are returned on dequeue and its index is freed
in the LRU FIFO.

We tested our logic implementation by enqueuing a set
of inputs and verifying that the system outputs the value in
increasing or decreasing order of tag based on the values
of deq_smallest_in and deq_largest_in. Enqueuing and
dequeuing elements take 1 cycle each, and after dequeuing,
finding the new minimum and maximum tags takes an addi-
tional DEPTH cycles.

2) Use as Priority Queue S: The priority queue, S, strictly
uses the min-heap style, i.e. only dequeues the smallest ele-
ment. As such, its interface is restricted to deq_smallest_in

and its associated ports.

Fig. 3. Implemented Priority Queue using a Searchable FIFO.

3) Use as Checked Queue : The checked queue requires
dequeuing both minimum and maximum elements. During the
main stages of BFiS, we use deq_largest_in when we need
to replace the element with the maximum tag for one with a
smaller tag. The interface also allows us to read the maximum
tag to determine if we should end the algorithm. When we
are ready to release the top k_in results, we dequeue the k
minimum elements in order using deq_smallest_in.

D. General Memory Storage

Our Memory storage is two BRAMs right now [Figure 4],
containing the graph in compressed sparse row (CSR) format.

Fig. 4. Memory layout for graph storage

BRAM 1 is a lookup table between vertex IDs and its
associated address (ADDR) in the CSR data array. BRAM 2
has the position vector at ADDR+1 to ADDR+1+DIM and the
neighbors from ADDR+2+DIM to the next 0 (NULL) value.
BRAM 2 is dual port to allow two lookups at the same time.

1 module graph_memory #(parameter DIM = 2, parameter
PROC_BITS = 4)(

2 input wire clk_in,
3 input wire rst_in,
4 input wire [31+PROC_BITS:0] idx_addr,
5 input wire idx_validin,

4

6 input wire [31+PROC_BITS:0] data_addra_in,
7 input wire [31+PROC_BITS:0] data_addrb_in,
8 input wire data_validina,
9 input wire data_validinb,

10 output logic [31:0] rowidx_out,
11 output logic [31:0] data_outa,
12 output logic [31:0] data_outb,
13 output logic [31:0] data_outc,
14 output logic data_valid_outa,
15 output logic data_valid_outb,
16 output logic rowidx_valid_out
17);

We created a wrapper around the BRAM to maintain
ordering and allow control signals, i.e. valid in and valid
out. BRAMs are delayed two cycles, which is identified using
control signals for appropriate buffering in a FIFO. The control
signals are outputted using a state machine that returns a valid
out two cycles after a valid input.

This memory is strictly read only. Currently, we operate on
small graphs that can fit in BRAM alone.

To look up the address of some vertex ID, the memory
abstraction provides a port to access the rowidx BRAM (single
port) with a request for a certain ID. The result two cycles later
is the ADDR corresponding to said ID.

E. Visited BRAM

We created a third BRAM to keep track of visited points
(using vertex id), as noted in the pseudocode shown in section
II (system overview). We store a 0 or 1 at each vertex ID,
where a 0 indicates the vertex has not been visited yet and
a 1 indicates the vertex has been visited. This module works
with the fetching framework – i.e. data for neighbors are only
fetched from memory if the vertex has not been visited yet. We
mark the first input vertex as visited at the beginning. Since
we only send requests to this module if we want to visit a
vertex, the resulting data at a given vertex ID will always be
1’b1. As a result, given a request, we always write in 1’b1 to
the BRAM and use the output (previous value in the BRAM)
to determine if the vertex has been visited. This module takes
2 cycles to write the value to BRAM.

F. Graph Fetcher

This module fetches [Figure 5], for a given vertex address,
all of its neighbors, and each neighbor’s position vector of
n dimensions, provided that neighbor was not previously
visited. Figure 9 in Appendix section XI-A shows a block
diagram of our graph fetcher system. As aforementioned,
the vertex ID, the vertex location, and the neighbor list are
sequentially placed in BRAM 2. Given a certain vertex address
(as computed from some vertex ID), we can iterate through the
addresses to fetch the position vector for each of neighbors.

This module starts by initializing the first neighbor at
vertex ADDR + DIM + 1 and accesses unvisited neighbors using
BRAM 2. For each neighbor vertex address, we look up its
associated vertex ID to index into the visited BRAM. If the
neighbor is not visited, we continue by fetching its position
data at addresses RESULT(ADDR+DIM+1+N) + 1 to RESULT(

ADDR+DIM+1+N) + 1 + DIM , where N is the current neighbor.

Fig. 5. Graph fetcher state machine.

We increment the request address until we get value 0
(NULL) in the BRAM for the neighbors. All outputs are
buffered into two FIFOs (one for position and one for neigh-
bors) to provide an easy access interface for other modules.
We add an element to the neighbor FIFO after reading a 0 from
the visited BRAM and add data to the position FIFO as we
get valid data. Furthermore, the FIFOs allow caching of results
when other modules are stalling/processing. The FIFO for the
position vector is of size (DIM · depth of neighbors FIFO) to
store data for all of the points in the neighbors FIFO.

Since the neighbor FIFO is fixed-size, elements are loaded
only when space is available. If the FIFO is full before we read
all neighbors, we stall the next neighbor BRAM request until
an element has been dequeued from the neighbor FIFO. We
keep the FIFO size around the average number of neighbors.
The neighbor FIFO does not need to be emptied before starting
to read the next vertex data since the order the neighbors will
be visited remains the same. Note that while it is not depicted
in the diagram, for simplicity, each read request includes a
delay of 2 cycles for the BRAM to return, triggered by the
ready bit on the memory module. FIFO reads, however, are
single cycle. The neighbor and position vector FIFOs can
dequeue/pop when data is ready/FIFO is not empty.

We tested our graph fetcher using a sample graph of 8
vertices with 4 dimensions each. Each vertex had between 2
and 4 neighbors, and most of the testing was completed with
neighbor FIFO size greater than 4. For every neighbor, our
system takes 2 cycles to find the address of the neighbor, 2
cycles to find the vertex ID, 2 cycles to check if the neighbor
has been visited, and 2 cycles each to request and receive data
(5 cycles total since data are requested on consecutive cycles)
if the neighbor has not been visited. With a few additional
cycles to update request variables and ready bits for requests,
this process took 15 cycles for an unvisited neighbor. This
value was 6 cycles if the neighbor had been visited. The
module also took 4 additional cycles at the end to read 0
as the termination condition.

Our FIFOs were able to correctly dequeue the position
vectors and neighbors in the order they were fetched. We
also tested the module with neighbor FIFO size 2 on vertices
with more than 2 neighbors. If the FIFO was full before all

5

neighbors could be fetched, the module successfully stalled
the BRAM requests until 1 of the neighbor FIFO elements
could be dequeued.

G. BFiS

We created a BFiS module to integrate all of the individual
modules together. This module is structured based on the
CPU implementation of our algorithm and implements the
distance calculator, graph memory storage, visited BRAM,
graph fetcher, and specialized priority queue modules. Similar
to the two priority queues in our CPU implementation, we used
two instantiations of the specialized priority queue module:
one for priority queue S and one to keep track of the top
L checked points. The checked priority queue must have a
depth of L, while S ideally has a depth large enough to store
all visited points that have not been checked (future work
includes redesigning our module to work with a smaller, fixed-
size S). We used one instantiation each of all other modules.
The connections between the individual modules is shown in
Figure 8 in Appendix section XI-A. We provided the vertex
ID, query vector, and k as inputs to our module and output
the top k vertex IDs sequentially on k different cycles.

1 module bfis #(parameter DIM = 2,
2 parameter PQ_LENGTH = 8)(
3 input wire clk_in,
4 input wire rst_in,
5 input wire [31:0] vertex_id_in,
6 input wire valid_in,
7 input wire [31:0] query_in [DIM-1:0],
8 input wire [15:0] k_in,
9 output logic [31:0] top_k_out,

10 output logic valid_out,
11 output logic [2:0] state
12);

We structured our BFiS implementation using a state ma-
chine with 8 states, as shown in Figure 6.

Fig. 6. BFiS finite state machine diagram

1) State 0: In state 0, we wait for the module to receive a
valid input vertex ID. If the module receives a valid input, we
initiate a lookup in BRAM 1 to find the address (ADDR) of
the vertex in BRAM 2. Since our position data for the vertex
is located from ADDR+1 to ADDR+DIM in BRAM 2, we
can use this address to directly fetch the position data of the
vertex. After initiating the lookup at ADDR+1, the module
transitions to state 1.

2) State 1: We then input the fetched data one at the time
into our distance calculator (section IV-A) to compute the
distance between our starting point and query. After receiving
a valid output from our distance module, we add our point to
priority queue S and initiate a dequeue for use in state 2. Since
we transition to state 2 whenever we dequeue an element from
S during the algorithm and use the output from the priority
queue in state 2, we chose to add and remove our starting
point from S rather than just using the point directly.

3) State 2: This state is the start of the outer while loop,
as specified by the pseudocode in section II. Once we receive
a valid output (vertex v) from S, we determine if the top L
visited points are all in our checked queue, similar to how we
designed the corresponding part in the CPU code (Appendix
section XI-B). If our checked queue has not yet reached
capacity L, we add v to the queue and move to state 3. If
our checked queue is full and v is closer to the query than the
farthest point in the checked queue, we first remove the farthest
point from the queue before adding v and transitioning to state
3. Otherwise, our L closest visited points are all checked, so
we move to state 6 to end our algorithm. While determining
which state to move to next, the module runs the graph fetcher
on v in parallel.

4) State 3: In this state, we check if v (element we last
removed from S) has any unvisited neighbors using our result
from the graph fetcher. If v has unvisited neighbors, we move
to state 4 to visit them. Otherwise, we move to state 5.

5) State 4: This state runs the inner for loop, as specified by
the pseudocode in section II. Using position information of the
unvisited neighbors from the graph fetcher, for every unvisited
neighbor, we find its distance from the query and add the
neighbor to S. Once all of the distances have been computed
and all of the unvisited neighbors have been added to S,
indicating that they have been visited, the module transitions
to state 5.

6) State 5: Once the inner loop has been completed, we
want to dequeue the next element in S, if possible. If S does
not have any elements left, we can move to state 6 and
end the algorithm since all visited points have been checked.
Otherwise, we dequeue the next element in S and return to
state 2 to run our condition for adding the point to the checked
queue.

7) State 6: This state indicates the end of the algorithm.
We dequeue the k elements in checked with the smallest tag
(our approximation of the k closest points to the query) one
at a time. Since our specialized priority queue module takes
L cycles to find the new closest point to the query after
dequeuing an element, we stall subsequent dequeues by L
cycles after receiving a valid checked output. In addition, since
we want to return the vertex ID of the approximate k closest
points, we look up the vertex ID of the point using BRAM
2 in parallel. After all k vertex IDs have been outputted, we
move to state 7.

8) State 7: This state indicates that the module has com-
pleted running the algorithm and the approximate closest
k points have been returned. State 7 was mostly used for

6

debugging on the FPGA to verify that the module was running
through the states as expected.

We created a custom testbench for simulation and tested
this module on a graph with 8 vertices of 4 dimensions each
to verify that the algorithm was working as expected.

H. UART Input and Output

We use a stream over the UART module Manta to produce
the appropriate inputs for initializing the BFiS system [3]. The
input order is as follows:

1) each query_in vector component (DIM 32-bit values)
2) k_in value
3) starting vertex v_id value
Each element is padded by 32’hFFFFFFFF, or −1. This value

ensures that we can easily differentiate values in the stream.
Once the appropriate number of values are recieved, BFiS is
started.

The outputs are dumped over UART once BFiS completes.
Each value of top_k_out is buffered into a FIFO and outputted
when Manta is ready (since Manta does not poll every cycle).
The cycle count from initialization is also outputted for
evaluation.

V. EVALUATION OF PERFORMANCE ON FPGA

We tested our system on three of the same datasets we used
to evaluate the CPU implementation:

1) Tester with 4 dimensional vectors
2) Tester with 8 dimensional vectors
3) Citeseer with 4 dimensional vectors
As mentioned in section III (CPU implementation), tester is

a very small dataset with just 8 vertices, and citeseer is a large
dataset with 3312 points. The position vectors are generated
at random to encompass a space of 10000DIM discrete points.

We evaluated performance using the number of cycles taken
to complete a full BFiS run. Each cycle takes 10ns on this
FPGA, which runs at 100 MHz. All logic on our FPGA was
designed to meet this timing requirement to maintain cycle
accuracy.

All results are in Table III.

TABLE III
PERFORMANCE OF BFIS ON AN FPGA

Dataset Checked PQ Size Cycles (10−8s) Speedup
tester 4 5 554 9.57
tester 8 5 614 9.12

citeseer 4 5 1541 7.33
citeseer 4 8 1946 5.96
citeseer 4 10 2536 4.42

Our results from the FPGA matched our results from the
CPU implementation, verifying accuracy of our system. In
addition, from these preliminary tests, our timing results were
significantly better than the runtime of the CPU implementa-
tion. We do understand that there is overhead with Linux and
C++ libraries that may add some base delay, but our results
are promising.

Our design meets all timing requirements (i.e. pipelined
appropriately to match that 10ns clock cycle). Lookup tables
(LUT) and slices are the most used resources, according to
our Vivado logs. These resources are used proportionally to
the graph size. For instance, on our larger graph, we used 60%
of Slice LUTs and 3.33% of Block RAM tiles. Our max delay
is the graph memory bandwidth with a slack of 1.5ns. This
is similar to modern machines, where memory bandwidth is a
main limitation for performance. Still, the timing is well under
the required value.

While we were able to fit our reference graphs into BRAM,
much larger graphs are indeed 100s of megabytes and would
require a different, unified, memory architecture, based on
DRAM.

However, for the score of this project, our system meets all
requirements for the resources provided on the Urbana boards
with a Xilinx Spartan-7-50 chip.

VI. CONCLUSION

We were able to meet many of the requirements we set forth
in our project checklist. Our system effectively implements the
graph-based vector search algorithm Best First Search on a
Xilinx FPGA for small graphs that can fit in BRAM. We also
successfully tested and evaluated the FPGA implementation
for accuracy and speed compared to a sequential CPU imple-
mentation. Our FPGA and CPU implementations achieved the
same accuracy, as expected, while the FPGA implementation
ran in similar time to the CPU implementation on a graph of 8
vertices using dimensions of 4 and 8, respectively, and 7.34x,
5.96x, and 4.42x faster than the CPU implementation on a
graph of 3312 vertices using PQ capacities of 5, 8, and 10,
respectively. We plan on improving this design in the future
by adding a DRAM for larger graphs and further parallelizing
to increase efficiency.

VII. FUTURE WORK

A. Large Graph Memory

Ideally, large graphs can be stored in DRAM, but we were
unable to implement DRAM that as part of this project.
Currently, we use graphs can fit in BRAM (less than a few
kB) in size. Once we start working with larger graphs, we plan
to have the BRAM used as a standard cache [Figure 7] with
the same interface that we currently use for requesting data.

We have implemented the structure and general logic of a
4-way direct mapped cache that handles read requests and
generates requests to a higher level of memory. We have
decided to wait until we implement a DRAM controller to
use it. Further work would need a larger board as our ‘larger’
graph already uses 60% of the board’s resources. This cache is
a BRAM with two ports – one for reading, and one for writing
missed lines that are fetched from DRAM (which would store
32 byte words in 4 words per line segments). We do not deal
with dirty lines because our memory is read only.

We did not focus on building a SPI or UART replacement
for DRAM since the graphs that we wanted to test fit in BRAM
without exhausting the FPGA resources.

7

Fig. 7. DRAM based memory connected to a 2 port BRAM based cache.
Only 2/4 ways are shown for space.

Some work that needs to be done for large graphs to work
effectively include making a shared memory for vertex ids and
graph CSR data (and possible checked status), since we only
have a single DRAM bank. We can instantiate multiple caches
to provide the same programming interface as we currently do.
DRAM would be populated over UART or SPI.

B. Random Point Sampler

Currently, we choose the starting point as a value deter-
mined by the user (that can be chosen at random by the user
python program if desired). We will ideally use a pseudo-
random sampler to find a better point closer to the destination
(hard coded value).

At the moment, we see this module selecting a small
random subset of vertices (possibly using a linear-feedback
shift register (LFSR)) from BRAM 1, computing the distances
between each vertex and the query, and using the one with
the smallest distance as the starting point. Choosing a starting
point in this way would likely allow the algorithm to finish
running in less iterations.

VIII. RETROSPECTIVE

A. Redesigning modules

As we were integrating the system together, we realized
that we could increase efficiency of our overall system by
redesigning some of our modules.

As mentioned in section IV-A, we originally designed our
distance calculator to use a recursive adder module but later
realized that parallelizing the addition with the subtraction
and multiplication was more efficient (and much simpler to
implement).

In addition, we initially designed our graph fetcher to fetch
the data and neighbors for a given vertex rather than the
neighbors and data for the neighbors. However, we realized
that whenever we needed to fetch the neighbors of a vertex,
we also needed the data of the neighbors to calculate the
distance between the neighbors and the query. As a result, our
previous design would have required some redundant fetching
and would have been harder to integrate with our overall
system. We also redesigned our graph fetcher to interface

with our visited BRAM module rather than following our
initial plan of checking the visited condition directly in the
BFiS module. This new design saved us additional cycles from
fetching data of already visited points.

B. Simulation to synthesis on FPGA

While trying to synthesize our system on the FPGA, we
realized that running in simulation alone was not adequate
enough to test our system since physical hardware acts differ-
ently in edge cases. When we first ran our system on the
FPGA, we had timing violations in our distance and spe-
cialized priority queue modules. Simulation does not measure
timing violations despite using 10ns clock cycles. We had to
pipeline more, separating large amounts of combinational logic
over multiple cycles, to ensure timing constraints were kept
after synthesizing on the FPGA.

After fixing the timing constraints, our FPGA no longer
outputted the correct results. Since we had thoroughly tested
each component in simulation, including integration of the
whole system, we had to fully debug on the FPGA, which can
be much harder than it looks. We ended up trying to isolate
the problem by using only the LEDs on the FPGA and Manta
to output signals for each component. After several days of
redesigning modules and debugging, we narrowed down our
incorrect results on the FPGA to blocking code and not all
modules being reset when the FPGA is flashed.

Since we mixed a lot of blocking (combinational) and non-
blocking (sequential) code, we ran into issues on the board
where signals might have differed by less than a clock cycle.
In some cases, we wanted values to be read same-cycle,
hence the combinational logic, but we had to convert some
of these signals to using sequential logic for the accuracy
of our system. In addition, in some of our modules, we set
variables to nonzero values at a system reset. However, the
reset conditional didn’t actually run for one of the modules,
so we had to set the values outside of the reset conditional.
This issue is definitely something to keep in mind for future
FPGA-related projects.

C. Time management

Our time management was good for the most part, and the
timeline we created in October helped us plan what to design
next. We also aimed to finish reports and other deliverables
ahead of the actual deadlines, allowing us enough time for
revisions.

However, since we assumed that a working system on the
FPGA would follow directly from a working simulation, we
didn’t dedicate any time for synthesis on our timeline and
rushed to get our system working during the second-to-last
week. We also did not account for time needed to redesign
some of our modules.

IX. CODE REPOSITORY

Our code temporarily can be found here.
Since this project is part of ongoing research, our repository

is not public at this time but will likely be posted publicly for

8

https://drive.google.com/file/d/1Z_PF0ETFfHodSYyDyP8TH1Y-Ffqeped1/view?usp=sharing

use in the future. In the future, our code can be found at
https://github.com/sanjayseshan/6.111 final project.

X. INDIVIDUAL CONTRIBUTIONS

A. Code

We both worked on code for the distance calculator, graph
fetcher, specialized priority queue, and BFiS modules. Lasya
wrote the CPU implementation of BFiS and the module for
reading from and writing to the visited BRAM. Sanjay wrote
the FIFO and graph memory modules.

B. Testing and Evaluation

Lasya tested the graph fetcher, specialized priority queue,
and BFiS modules in simulation and evaluated the CPU imple-
mentation. Sanjay tested the FIFO module in simulation, fixed
timing issues in our priority queue and distance calculator
modules, and evaluated our design on the FPGA. Both of
us tested the distance calculator in simulation and debugged
issues going from simulation to synthesis on the FPGA.

ACKNOWLEDGMENT

We would like to thank Joe Steinmeyer and the rest of
the 6.205 staff for their support and supervision during the
course of this project’s development. We would also like to
thank Dr. Xuhao Chen and Prof. Arvind Mithal in the CSAIL
Computation Structures Group who sponsored this project.

REFERENCES

[1] W. Jiang, S. Li, Y. Zhu, J. d. F. Licht, Z. He, R. Shi, C. Renggli, S. Zhang,
T. Rekatsinas, T. Hoefler et al., “Co-design hardware and algorithm for
vector search,” arXiv preprint arXiv:2306.11182, 2023.

[2] Z. Peng, M. Zhang, K. Li, R. Jin, and B. Ren, “iqan: Fast and accurate
vector search with efficient intra-query parallelism on multi-core archi-
tectures,” in Proceedings of the 28th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, 2023, pp. 313–328.

[3] F. Moseley, “Manta: An in-situ debugging tool for programmable hard-
ware,” M. Eng. thesis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2023.

9

https://github.com/sanjayseshan/6.111_final_project

XI. APPENDIX

A. Block Diagrams of Module Connections

Fig. 8. Higher level block diagram for entire system

Fig. 9. Block diagram for graph fetcher

10

B. C++ Code for CPU Implementing BFiS

1 #include <tuple>
2 #include <queue>
3 #include "ann.h"
4 #include "utils.hh"
5 #include "common.hpp"
6

7 void kNN_search(int K, int qsize, int dim, size_t dsize,
8 const float *queries, const float *points, vid_t *results, Graph &g) {
9

10 // find K closest points for each query
11 for (int query_id=0; query_id<qsize; query_id++) {
12

13 const float* query = queries + query_id * dim; // define query
14 int L = 10*K; // queue capacity L
15 int visited [dsize] = { 0 }; // create visited list
16

17

18 // priority queues
19 std::priority_queue<tuple<float,int>, vector<tuple<float, int>>, greater<tuple<float, int>>> S;
20 std::priority_queue<tuple<float,int>> checked;
21

22

23 // index of starting point
24 int index = 0;
25

26 // distance calculation
27 float dist = 0.0;
28 for(int i=0; i< dim; i++){
29 dist = dist + pow((points[i]-query[i]), 2);
30 }
31

32

33 // add starting point to S
34 S.push(make_tuple(dist, index));
35 visited[index] = 1;
36

37

38 while (!S.empty()) {
39 // first unchecked point
40 vidType v = get<1>(S.top());
41

42 // marked v_i as checked if less than L points checked or dist less than max checked dist
43 if (checked.size() < L || get<0>(S.top()) < get<0>(checked.top())) {
44 checked.push(S.top());
45

46 // resize based on L
47 if (checked.size()>L) checked.pop();
48 }
49

50 // otherwise, if size is L, exit
51 else {
52 if(checked.size()==L) break;
53 }
54 S.pop();
55

56

57 // iterate through neighbors
58 for(vidType u:g.N(v)) {
59 if (visited[u] == 0) {
60 visited[u] = 1;
61

62

63 // distance calculation
64 const float* point = points + u*dim;
65 dist = 0.0;
66 for(int i=0; i< dim; i++){
67 dist += pow(point[i]-query[i], 2);
68 }
69

70

71 // add point to S
72 S.push(make_tuple(dist, u));

11

73 }
74 }
75 }
76

77 // remove elements not in top K
78 while (checked.size() > K) {
79 checked.pop();
80 }
81

82 // insert values in results
83 int checked_length = checked.size();
84 for (int i=0; (i<K && i<checked_length); i++) {
85 results[query_id * K + (K-i-1)] = get<1>(checked.top());
86 checked.pop();
87 }
88 }
89 }

12

	Introduction
	System Overview
	CPU Implementation
	Design
	Verification and Performance

	Core components
	Distance Calculator
	FIFO Queues
	Specialized Priority Queue
	Structure
	Use as Priority Queue S
	Use as Checked Queue

	General Memory Storage
	Visited BRAM
	Graph Fetcher
	BFiS
	State 0
	State 1
	State 2
	State 3
	State 4
	State 5
	State 6
	State 7

	UART Input and Output

	Evaluation of Performance on FPGA
	Conclusion
	Future Work
	Large Graph Memory
	Random Point Sampler

	Retrospective
	Redesigning modules
	Simulation to synthesis on FPGA
	Time management

	Code Repository
	Individual Contributions
	Code
	Testing and Evaluation

	References
	APPENDIX
	Block Diagrams of Module Connections
	C++ Code for CPU Implementing BFiS

