SANJAY SESHAN

☑ sseshan@andrew.cmu.edu | 🌴 http://sanjay.seshan.org/ | 🖸 sanjayseshan | in sanjayseshan

Education

Carnegie Mellon University (CMU) Doctor of Philosophy (PhD) student, Electrical and Computer Engineering	Pittsburgh, PA, USA Aug. 2025 - Dec. 2030
Massachusetts Institute of Technology (MIT)	$Cambridge,\ MA,\ USA$
Bachelor of Science, Course 6-2 Electrical Engineering and Computer Science	Sep. 2021 - May 2025
GPA: 4.9/5.0	

Research Experience

${\bf EPFL-Verification\ and\ Computer\ Architecture\ Lab}$

Research Intern, PI: Professor Thomas Bourgeat

Lausanne, Switzerland May 2024 - Aug. 2024

- Contributed to development of CPU architecture that simplifies domain-specific accelerator integration and reduces coordination overhead in highly multithreaded systems
- Extended RISC-V ISA to support thread creation, thread termination and inter-thread communication
- Implemented extensions to RISC-V design for "token"-based approach to managing inter-thread communication using Bluespec SystemVerilog HDL
- Verified design using a tandem verification system

Imperial College London – Adaptive Emergent Systems Engineering Group

London, UK Jun. 2023 - Aug. 2023

Research Intern, PI: Professor Julie McCann

Jun. 2025 - Aug. 202

- Evaluated sensors and embedded development for maintenance-free monitoring of long-duration freight shipments
- Developed and programmed proof-of concept implementation to demonstrate low-power capabilities
- Designed custom PCB design containing of all desired sensors, CPU, and interfacing chips, which was subsequently printed, assembled and tested with expectations to deploy sensor onto a freight ship in the near future

MIT CSAIL - Computation Structures Group

Undergraduate Research Assistant, PI: Professor Arvind

Cambridge, MA, USA

Cambridge, MA, USA

- Jan. 2023 May 2024
- Designed application-specific accelerator for graph pattern mining and graph vector search
- Synthesized accelerator for Xilinx FPGA using Vivado and evaluated correctness and efficiency of implementation
- Evaluated performance of processing in memory (PIM) and parallelization techniques in the implementation

Publications and Presentations

• Hanly, B. 1st, Ospina, L. 1st, **Seshan, S.** 1st, Paul D.J., Niroui, F., Jan. 2024, Two-dimensional MoS₂ transistors (Poster), **Microsystems Annual Research Conference (MARC)**

Work & Teaching Experience

MIT Strobe Project Laboratory 6.9030[6.163] Teaching Staff

Undergraduate Teaching Assistant	Feb. 2025 - May 2025
MIT Computation Structures 6.1910[6.004] Teaching Staff Laboratory Assistant	Cambridge, MA, USA Sep. 2024 - Dec. 2024
\bullet Hosted office hours for 300+ students, reviewed assignments before release	
3.57 C	~ 1 .1 354 77~4

MIT Constructive Computer Architecture 6.1920[6.175] Teaching Staff
Undergraduate Teaching Assistant

Cambridge, MA, USA
Feb. 2024 - May 2024

• Delivered multiple lectures, developed course materials, held office hours, and supervised final projects for 30 students

Emerald InnovationsCambridge, MA, USASoftware Engineering InternMay 2022 - Aug. 2022

- Designed algorithm to extract common paths that a single person takes from RF signal measurement
- Implemented algorithm to detect walking changes that could indicate the progression of disease

Technical Skills

- C/C++, Bluespec, SystemVerilog, Python, Embedded systems design and programming (e.g. Zephyr), Cadence simulation and layout, Xilinx FPGA toolchain (vivado)
- Photoshop & DSLR Photography, LATEX, Machine Learning (pytorch), Signal Processing, PCB Circuit layout & Design (KiCad, Altium), Java, HTML/JS/CSS

Relevant Coursework

• MIT: 6.175 Constructive Computer Architecture, 6.111 Digital System Laboratory (FPGA), 6.012 Nanoelectronics Systems, 6.2080 Semiconductor Electronics, 6.039 Operating Systems Engineering, 6.115 Microcomputer Systems, 6.823 Computer System Architecture, 6.888 Secure Hardware Design

Significant Projects

- TFT-based Digital Circuits (MIT 6.152): Built digital circuits for evaluation using Thin Film Transistors
- PPG sensor (MIT 6.808): Built custom 3d-printed Arduino-based PPG sensor for heart rate and blood pressure estimation
- Custom Strobed Ripple Tank (MIT 6.163): Designed and built a ripple tank using an Arduino-based strobe and wave generator to build a ripple tank to demonstrate the interference patterns of waves in a double-slit experiment.
- Silicon Differential Amplifier (MIT 6.2080): Completed layout and tapeout preparation process for CMOS-based differential amplifier in Cadence.
- Embedded Oscilloscope (MIT 6.115): Designed and implemented PSoC (programmable system on chip) based oscilloscope, with two analog inputs and one analog output, including full frequency analysis and user customizability.
- 2D MoS₂-based Transistors (MIT 6.s059): Fabricated nano-scale 2D MOSFET-style transistor using MoS₂ channels for use in developing logic gates, working from design to physical tapeout. Work was accepted to Microsystems Annual Research Conferences (MARC), Jan. 2024.
- Multicore RISC-V Implementation (MIT 6.175): Designed and implemented pipelined, dual-core RISC-V 32-bit processor with shared cache hierarchy in Bluespec SystemVerilog. Synthesized design to work on AWS-based FPGA.

Leadership and Community Activities

• MIT SPARK/SPLASH Instructor:

 Taught Graph Algorithms course to 30 high school students and Gravitation and Electrostatics to 30 middle school students.

• Maseeh Hall Dorm Executive:

- Representative for Spring 2022. Managed a budget of \$800 for 100 students.
- Chair for Campus Preview Weekend (CPW) for the 2022-2023 and 2023-2024 school years. Organized dozens of events for almost 1000 MIT admits, introducing them to MIT academics and culture.
- Chair for REX (Orientation events) Fall 2023. Ran events to introduce the 1100 new First-Years to their new home at MIT, including 150+ to the dorm. Supported students during move-in.
- Official photographer for several events, including Maseeh formal and boat cruise.
- Chair for Reservations Spring 2025. Manage room rervations and help with upgrading facilities.

• K-12 Youth Robotics Volunteer:

- Wrote introductory programming lessons for youth robotics students used by 1.5 million.
- Developed Web-based tournament management system for FIRST events with support to manage team submissions, judging, and scoring.
- Alpha and beta-tested both hardware and software products under NDA for the LEGO Group in Billund, Denmark.
 Designed three robots for the official LEGO MINDSTORMS App released in 2021.

• MIT IEEE Eta Kappa Nu (HKN) National Honor Society Tutor

- Tutor for MIT 6.002, Circuits and Electronics